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ters are dark-yellow or brown viscous oils. The 
methallyl and allyl esters display little tendency 
to polymerize. 

The vinyl esters have been copolymerized with 
vinyl acetate and also with styrene, the 2-chloro-

Application of statistical procedures to models 
of antibody-antigen combination yields expres
sions involving certain thermodynamic constants 
of the equilibrium; such expressions enable the 
calculation of these constants from conventional 
measurements, and may therefore be of interest. 
We wish to present here certain relations of this 
sort based on a useful model proposed recently by 
Teorell.1'2-3 

In Teorell's model, antibody (A) is assumed uni
valent,4 and antigen (G) is assumed re-valent; the 
aggregate compounds have therefore the formulas, 
AiG, and the equilibrium is formally similar to 
that of ampholyte dissociation6 

A + Ai . jG ^ " ± A1Gl 
r i = 1,2 n (1) 

K1 = [A|G]/[A][A4_,G]J 

We shall assume in what follows that the total 
concentrations of antibody and antigen, A0 and 
Go, respectively, are known experimentally. De
ferring until later a discussion of the matter, we 
shall also suppose that the concentration ratio of 
total bound antibody to total bound antigen in the 
initial solution 

R ='£"*[A,G]/ff [AiG] 
«=*i t - i 

is measurable (actually this ratio is measurable 
only in the precipitate which subsequently forms). 
Clearly, Lim R = », the antigen valence. In cer-

tain cases it will be further required to know the 
amounts of bound A and G. Various assumptions 
regarding the aggregation will now be considered 
separately. 

I. The reactivity of a vacant reactive site on 
the surface of an A-G aggregate is assumed to be 

(1) Teorell, Nature, 181, 696 (1943). 
(2) Teorell, J. Hyg., «4, 227 (1946). 
(3) Teorell, ibid., 44, 237 (1946). 
(4) The unsettled rivalry between this model, which goes back to 

the concepts of Bordet, and the framework model proposed inde
pendently by Marrack and Heidelberger and later greatly elaborated 
by Pauling (THIS JOURNAJ,, 62, 2643 (1940)) is acknowledged. The 
same methods here used, however, appear applicable to the latter 
case, although with more difficulty. 

(5) Analogs to our cases I and II below have been given for ampho
lyte dissociation by Kirkwood in Cohn and Bdsall, "Proteins, Amino 
Acids and Peptides," Reinhold Publ. Corp., New York, N. Y., 1943, 
pp. 290-294. The specific model treated, however, is quite different. 

allyl esters with vinyl acetate only and the allyl 
esters with diallyl phthalate. The wide range of 
properties attainable in the copolymers suggests 
numerous potential uses for the products. 
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completely independent of the remainder of the 
structure on which it exists. In this case it may 
be shown that 

_ Jg1[A](I + JC1[AIZw)-' 
(l + iT,[A]/f»)»- 1 w 

Ii Ao and G0 be given special values, A0' and G0' 
such that [A] becomes equal to n/Ki, then R 
takes on a special value, R' = (n/2)/( l — 1/2"), 
which is very nearly n/2 for w ^ 4. Conversely, 
one may vary A0 and G0 experimentally until R 
becomes, say, n/2; at that point [A] equals n/Ki, 
and one may also show that on this account 

K1 = n/{A0' - R'Gt') (3) 

Ki is thus obtainable from the usual concentra
tion measurements. All other equilibrium con
stants are derivable from K1 by means of the 
formula 

K1 - (KJn)(n - » + X)Ii (4) 

II . The antibody molecules on the surface of 
the same antigen are assumed to attract or repel 
one another. I t is assumed (rather reasonably) 
that these interactions can be represented as an 
A-A bond energy, £AA, and that they operate only 
between nearest neighbor molecules. To treat 
this case one must make specific assumptions 
about the surface lattice formed by the reactive 
sites on the antigen. We shall here consider three 
such lattices, corresponding to the contact points 
on any sphere6 in the (a) hexagonal closest pack
ing of spheres, (b) cubic closest packing of spheres, 
and (c) simple cubic packing of spheres. In this 
case we have 

»=» 
£ £ *(*i[A]/«W> exp (-PEAA/kT) 

R = ^ r 1 (5) 
£ £ (K1[A]ZnYWi^ exp (-pE^/kT) 
i = i p 

where, for a given lattice, Wiw is the number of 
microscopically different ways in which i antibody 
molecules may be placed on an antigen molecule 
in such a manner that among the antibody mole
cules there will be p nearest neighbor pairs. The 
calculation of the W\(*> is considered elsewhere.7 

(6) Pauling, "Nature of the Chemical Bond," Cornell University 
Press, Ithaca, N. Y., 1940. 

(7) Morales and Botts, J. Chem. Phys., 16, 587 (1948). 
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- 3 - 2 - l o + 1 
£AA Ik T. 

Fig. 1.—Critical value of J? as a function of BAA I kT, for 
two different lattices and for two degrees of approximation 
(cases II and IV of the text). 

Suffice to say here that the value of R, viz., R', at 
which Ki = n/(Ao' — R'GQ') is now no longer w/2, 
but depends also upon £AA- Once £AA is known, 
as from colligative property measurements on 
concentrated solutions of pure antibody, then R' 
is calculable (see, for example, Fig. 1, curves II) . 
The relation between the Ki and K1 is given by 

K1Y1W1^ txp(-pEAAfkT) 

K1 = (6) 

P 

I I I . A and G are assumed to be spherical mole
cules of approximately the same mass and radius, 
and the moment of inertia of A\G is assumed to be 
the same as that of an equivalent sphere having 
the aggregate mass and volume of i + 1 mole
cules. The inclusion now demanded of the trans-
lational and rotational effects upon the equilibrium 
can only be done very approximately, employing 
gas-type partition functions, but the results have 
some comparative value over those derived in 
section I. One finds that 

T? - Q(Q + I H l + K1[A)ZWn)" 
(Q + 1)*(1 + iri[A]/16i»)» - 1 u ; 

where Qk stands for the operation, d/d log[A]. 
In this case Ki = 16n/[A] when R takes on a defi
nite value R'{n) readily calculable from (7). 
However, it will in general be required to measure 
[A] at this point (as distinct from simply know
ing A o). The formula for K\ is 

Ki = (K1ZlQn)[H + l)/iY(n - i + I)Ii (8) 
IV. The conditions in II and III above are to 

be combined. For this case 

E *(*' + D4 E W"exp. (-PEAAZkT) 
»=•! p 

E (* + I)4 E Wi^exp^-pEAA/kT) 
i-i P 

(9) 

the value of R when Ki = 16»/ [A], can be plotted 
for a given lattice (Fig. 1, curves IV) as a function 
of £AA. It is, as in Case III, required to know [A ] 
experimentally. For .Ki we have 

E W > e x p . (-pEAA/kT) 

K1 = (K1ZlQn)Ki + l ) / i ] 4 =^ s 

Y1WW^Xp. (-pEAAZkT) 
P 

(10) 
In the foregoing cases, I-IV, we have considered 

varying degrees of approximation to the descrip
tion of the equilibrium (1) presumably in the solu
tion phase; however, we have already indicated 
that total amounts, ratios, etc., are actually meas
ured in the precipitate which appears upon com
pletion of the "secondary reaction" or fioccula-
tion, this secondary reaction customarily being 
aided by the application of a centrifugal field. I t 
is now necessary to discuss the relation between 
the solution composition (as described by the 
equations above) and the precipitate composition. 
The simplest hypothesis of all, and the one with 
which we will content ourselves for the present, is 
to assume (as have Teorell and others) that 
[AiG]Sorn. = [AiG ]ppt. Rash as this may sound, 
it is nevertheless possible to imagine situations in 
which it may be approximately true. On the basis 
of a monovalent antibody the qualitative reason 
for the insolubility of the A-G aggregates (com
pared to A and G) is ascribed to the occlusion8 by 
A-G bond formation of sites which ordinarily 
would interact strongly with the solvent, and con
fer an appreciable solubility on the molecule. If 
we suppose that the "primary" reaction (1) 
reaches equilibrium and then a precipitating con
dition (e. g., centrifugation or flocculation by quite 
a different mechanism) is suddenly applied, one 
would obtain 

Rovt — 

E i U A i G W - [AiGU.] 
i 

E I [AiGWn. - [AiGU) 
(H) 

where [AiG ]sat. is the molar solubility of the A4G 
aggregate in the presence of the suddenly applied 
condition. If, in particular, all [AiG ] sa t . are near 
zero,9 then we are left with the R dealt with in 
cases I-IV. Quite a different justification for the 
assumption [AiG]soin. = [AjG ]ppt. has been sug
gested by Teorell,2 namely, that molecules of the 
size and nature (number of reactive sites) involved 
here may, as it were, be "precipitated in part" or, 
more specifically, that sites on the structure which 
have not reacted may participate in the solution 
equilibrium; the fact that certain enzymes (e. g., 
beef catalase) when acting as antigens can catalyze 
their specific reaction even after having been pre-

(8) Boyd. "Fundamentals of Immunology," Interscience Pub
lishers, New York, N. Y., 1947. 

(9) This restriction may be lightened by developing approximate 
expressions for [AiG]Iat. based on Meyer's solubility equation (see 
Mark, "The Physical Chemistry of High Polymeric Systems," 
Interscience Publishers, New York, N. Y., 1940, p. 249). 
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cipitated in A-G form is cited by him as indicating 
the plausibility of the phenomenon. I t is cer
tainly true that neither of the two foregoing argu
ments is thoroughly convincing, and the assump
tion must be regarded as provisional, even though 
the experimental comparison of equations based 
upon it is quite encouraging.8 Probably the most 
satisfactory treatment would be to introduce defi
nite solubilities for the aggregate molecules and 
treat the solution-precipitate equilibrium in the 
standard way. This has been done for the re
stricted case of bivalent antibody and bivalent 
antigen (corresponding, so far as mechanical con
siderations are concerned, to our case I) by Paul
ing, et al.10 I t can also be done, although with 
considerable awkwardness, for the present cases. 

So long as the numerical values are not taken 
too literally but viewed, rather, in a comparative 
sense, it may be of some interest in closing to ex
amine numerically the effect on the equilibrium 
constants of including the perturbations of cases 
II, III , and IV. Previous treatments (corre
sponding to case I) do not appear to have included 
them, or, when allowing for perturbations of any 
sort, have not specified how they can be calcu
lated. Let us consider, for example, a system 
where A and G are spherical molecules of molecu
lar weight, 100,000 g., and radius, 75 A., the tem
perature is 37°, and the surface lattice of reactive 
sites on G is the hexavalent lattice, (c). To esti
mate the effect of translation and rotation we may 
compare the results of case I with those of case 
III . By the method of case I the K1 are deter
mined only up to a multiplicative constant (in
volving the translational and rotational factors) 
which is supposed to be independent of i. This is 
also clearly the case in ordinary thermodynamic 
formulations and in so-called "kinetic" deriva
tions, wherein no method is provided for calculat
ing the proportionality constant on the basis of 
mechanical information about the reactant mole
cules. Actually, as a result of translation and ro
tation and A-A interactions (cases H-IV), the 
"constant" does depend on i. Since we cannot 
compute the absolute value of K\Wt we cannot 
examine the effect (say, translation and rotation) 
of this dependence upon the ratio, 2<Li(iyifi(ni); 
however, we may consider instead the function 
(K1WDf K^11D) f (K1WfK6W)1 in which the pro
portionality "constant" does not appear, and 
which, if translational-rotational effects are negli
gible, should be unity. Actually, it turns out to 
be about 8.7 in this example. The effect of even 

(10) Pauling, et al, T H I S JOURNAL, 64, 3003 (1942). 

very slight A-A interactions can be estimated by 
a comparison of case I and case II.7 Assuming a 
repulsion, £ A A = +kT, one finds K1WfK1W = 
1, K3WfK3W) = 4,9,SLTIdKiWfK6W) = 328, again 
emphasizing that such interactions are not to be 
disregarded. Still a third instructive compu
tation is an estimate of the absolute value of the 
equilibrium constants and therefore of the stand
ard free energy change per reaction site. (This is 
admittedly quite rough, because the system for 
which a good value of AZJ has been measured does 
not conform too well with our particular numerical 
example.) Using a hemocyanin as an antigen and 
horse antibody, Boyd, et al.,n found the AZJ (or 
what we shall here assume as equivalent, AE) per 
site to be about —40,000 cal. This leads12 to a 
X1*

111) value of 1.18 X 108 Ii. mole-1, and a Af1
0 

of —11,400 cal. Assuming that an A-G bond is 
really the composite of several "weak" bonds of 
bond energy ca. 5,000 cal.,6 one finds for our ex
ample a free energy change per individual weak 
bond of about —1400 cal., which is not an un
reasonable value. 

The authors are indebted to Professors Linus 
Pauling and William C. Boyd for criticisms help
ful in the preparation of this manuscript. 

Summary 

Assuming a polyvalent antigen and a mono
valent antibody, there are derived by conventional 
statistical methods certain relations between meas
urable concentrations of the reactants and the 
dissociation constants characterizing the equi
librium. From these relations it is possible to cal
culate the constants, given the appropriate con
centration data. This is done for various assump
tions regarding the nature of the reaction. Rough 
estimates made on the basis of existing informa
tion suggest that certain perturbations of the 
equilibrium, such as the interaction between near
est neighbor antibody molecules on the same anti
gen molecule or the effects of translation and ro
tation, may not be negligible as usually has been 
assumed in the past. 
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(11) Boyd, et a*., J. Biol. Chem., 139, 787 (1941). 
(12) Under the assumptions of case I I I , the absolute expression for 

Ki is 
2*Nme-BAQ/kT 

where Âo is the Avogadro number, m the mass, k the Boltzmann 
constant, T the absolute temperature, k the Planck constant, and a 
the radius of the molecule. 


